Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Feng Zhang, Dan Jin, Yong Zhang and De-Chun Zhang*

Department of Chemistry, Suzhou University, Suzhou 215006, People's Republic of China

Correspondence e-mail: dczhang@suda.edu.cn

Key indicators

Single-crystal X-ray study T = 193 K Mean σ (C–C) = 0.004 Å R factor = 0.057 wR factor = 0.124 Data-to-parameter ratio = 15.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

6-Bromo-1'-ethyl-4-(1-ethyl-3,3-dimethyl-1*H*-indolin-2-ylidenemethyl)-3',3'dimethylspiro[3,4-dihydro-2*H*-1-benzopyran-2,2'(3'*H*)-1'*H*-indoline], a dicondensed spiropyran

The title molecule, $C_{33}H_{37}N_2O$, as a dicondensed spiropyran (DC), contains a benzopyran and two indoline ring systems. Each of the three systems is nearly planar. While both indolines are almost perpendicular to the benzopyran, they make a dihedral angle of 33.6 (4)° with each other. The two chiral C atoms have the same chirality (*RR* or *SS*).

Received 27 September 2005 Accepted 4 November 2005 Online 16 November 2005

Comment

As photochromic and thermochromic organic compounds, benzospiropyrans have received considerable attention (Berkovic *et al.*, 2000), due to their potential application in data recording, optical switching, displays and non-linear optics (Feringa *et al.*, 1993). Dicondensed spiropyrans (DC) were reported as side products in the synthesis of spiropyrans, and found use as additives in silver halide emulsions and components of thermal papers (Pommier *et al.*, 1975), but their structures were assigned differently (Koelsch & Workman, 1952; Hinnen *et al.*, 1968) and no crystal structure was found in the Cambridge Structural Database (Version 5.26; Allen, 2002). The unequivocal structure of (I) has therefore been established by X-ray single-crystal analysis and is reported here.

The title molecule contains six rings, and each pair of fused rings (I and II, III and IV, and V and VI) is nearly coplanar. The dihedral angles between rings I and II, III and IV, and V and VI are 7.2 (2), 2.1 (3) and 7.1 (2)°, respectively. The dihedral angle between the first indoline (I and II) and the benzopyran (III and IV) is 98.7 (3)°, that of the second indoline (V and VI) and benzopyran is 90.7 (4)°, and that of the two indolines is 33.6 (4)°. Atoms C7 and C9 have the same

 $\ensuremath{\mathbb{C}}$ 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

View of the molecular structure of the title compound, showing 30% probability displacement ellipsoids.

Packing diagram for (I), viewed down the c axis.

configuration (*RR* or *SS* in inversion-related molecules). The C7–C10–C11–N1 torsion angle is -175.9 (3)°, showing that the double bond C10=C11 adopts an *E* configuration. The torsion angles H8A–C8–C7–H7, H8B–C8–C7–H7 and H7–C7–C10–H10 are 53, 169 and -176° , respectively. All of the above is consistent with the results of a recent paper (Keum *et al.*, 2005), in which the authors discussed the mechanism of DC formation using geometric data.

In the crystal structure, molecules interact through C– H··· π interactions (Table 2; Madhavi *et al.*, 1997; Umezawa *et al.*, 1998) and pack in a parallel manner along [010] (Fig. 2 and Table 2).

Experimental

A solution of 5-bromosalicyaldehyde (0.5 g) and 1-ethyl-3,3-dimethyl-2-methyleneindoline (0.3 g, Fischer base) in 15 ml of ethanol was boiled for 3 h and cooled. The solid was removed and washed with 95% ethanol. Colourless crystals (m.p. 456–458 K) were grown by slow evaporation at ambient temperature (298 K) of a solution in chloroform and ethanol (1:2 ν/ν) for 3 d. IR (FT–IR spectrometer with KBr pellets, ν , cm⁻¹): 1488, 1106, 989, 923, 1384, 1606; ¹H NMR (Bruker AV-400 NMR spectrometer, 399.97 MHz, CDCl₃, 298 K): δ 1.14 (t, 7H), 1.28 (s, 4H), 1.33 (s, 3H), 1.64 (s, 4H), 2.10 (t, 1H), 2.41 (m, 1H), 3.20 (m, 2H), 3.30 (m, 1H), 3.55 (d, 1H), 3.87 (d, 1H), 5.72 (d, 1H), 6.57 (t, 2H), 6.79 (m, 2H), 7.06 (d, 2H), 7.15 (s, 3H), 7.58 (d, 2H).

Crystal data

$C_{33}H_{37}BrN_2O$
$A_r = 557.56$
Aonoclinic, $P2_1/n$
= 12.4808 (15) Å
= 12.0528 (15) Å
= 20.146 (3) Å
$B = 107.031 \ (4)^{\circ}$
V = 2897.7 (7) Å ³
Z = 4

Data collection

Rigaku Mercury diffractometer ω scans Absorption correction: multi-scan (Jacobson, 1998) $T_{min} = 0.648, T_{max} = 0.763$ 28220 measured reflections 5291 independent reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0445P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.057$	+ 1.8582P]
$wR(F^2) = 0.124$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.15	$(\Delta/\sigma)_{\rm max} = 0.003$
5291 reflections	$\Delta \rho_{\rm max} = 0.24 \text{ e } \text{\AA}^{-3}$
341 parameters	$\Delta \rho_{\rm min} = -0.44 \text{ e} \text{ \AA}^{-3}$
H-atom parameters constrained	

 $D_x = 1.278 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation Cell parameters from 9054

reflections $\theta = 3.1-25.3^{\circ}$ $\mu = 1.45 \text{ mm}^{-1}$ T = 193 (2) K

Block, colorless

 $R_{\rm int} = 0.046$

 $\theta_{\rm max} = 25.4^{\circ}$

 $h = -14 \rightarrow 15$

 $k = -13 \rightarrow 14$

 $l = -24 \rightarrow 24$

 $0.32 \times 0.30 \times 0.19 \text{ mm}$

4270 reflections with $I > 2\sigma(I)$

Table 1 Selected geometric parameters (Å, °).

O1-C1	1.366 (3)	N2-C9	1.446 (4)
O1-C9	1.474 (3)	N2-C30	1.455 (4)
N1-C18	1.388 (4)	C2-C7	1.520 (4)
N1-C11	1.401 (4)	C7-C10	1.492 (4)
N1-C26	1.449 (4)	C7-C8	1.529 (4)
N2-C25	1.394 (4)	C10-C11	1.337 (4)
C1-O1-C9	120.2 (2)	C9-C8-C7	115.0 (2)
C18-N1-C11	111.0 (2)	N2-C9-O1	105.1 (2)
C18-N1-C26	123.1 (2)	N2-C9-C8	112.2 (2)
C11-N1-C26	123.7 (2)	O1-C9-C8	109.3 (2)

N2-C9-C19

O1-C9-C19

C8-C9-C19

103.0(2)

108.3(2)

118.0(2)

109.0 (2)

121.5 (2)

121.5 (2)

C7-C10-C11-N1 -175.9 (3)

Table 2

C25-N2-C9

C25-N2-C30

C9-N2-C30

Hydrogen-bond geometry (Å, °).

Cg5 is the centre of ring V.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$		
$C31 - H31B \cdots 01^{i}$ $C23 - H23 \cdots Cg5^{ii}$	0.98 0.95	3.19 2.82	3.960 (3) 3.629 (3)	136 143		
Symmetry codes: (i) $-x + \frac{3}{2}$, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{3}{2}$.						

H atoms were positioned geometrically. The C–H bond lengths are 0.98Å for primary C, 0.99Å for secondary C, 1.00Å for tertiary C and 0.95Å for aromatic sp^2 C atoms; the H atoms were treated as riding, with $U_{iso}(H) = xU_{eq}(\text{carrier atom})$, with x = 1.5 for the primary C atoms and 1.2 for the other C atoms.

Data collection: *CRYSTALCLEAR* (Rigaku, 1999); cell refinement: *CRYSTALCLEAR*; data reduction: *CrystalStructure* (Rigaku, 2000); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

This research was supported by the Key Subject Foundation of Jiangsu Province (No. S1109001).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

Berkovic, G., Krongauz, V. & Weiss, V. (2000). *Chem. Rev.* **100**, 1741–1753. Feringa, B. L., Jager, W. F. & de Lange, B. (1993). *Tetrahedron*, 49, 8267–8310.

- Hinnen, A., Audic, C. & Gautron, R. (1968). Bull. Soc. Chim. Fr. pp. 2066–2074.
- Jacobson, R. (1998). Private communication to Rigaku Corporation, Tokyo, Japan.
- Keum, S.-R., Ku, B.-S., Shin, J.-T., Ko, J. J. & Buncel, E. (2005). *Tetrahedron*, **61**, 6720–6725.
- Koelsch, C. F. & Workman, W. R. (1952). J. Am. Chem. Soc. 74, 6288-6289.
- Madhavi, N. N. L., Desiraju, G. R., Katz, A. K., Carrell, H. L., & Nangia, A. (1997). Chem. Commun. pp. 1953–1954.
- Pommier, H., Samat, A., Metzger, J. & Guglielmetti, R. (1975). J. Chim. Phys. Phys. Chim. Biol. 72, 589–594.
- Rigaku (1999). CRYSTALCLEAR. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2000). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Umezawa, Y., Tsuboyama, S., Honda, K., Uzawa, J. & Nishio, M. (1998). Bull. Chem. Soc. Jpn, **71**, 1207-1213.