Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Feng Zhang, Dan Jin, Yong Zhang and De-Chun Zhang*

Department of Chemistry, Suzhou University, Suzhou 215006, People's Republic of China

Correspondence e-mail: dczhang@suda.edu.cn

Key indicators

Single-crystal X-ray study
$T=193 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.057$
$w R$ factor $=0.124$
Data-to-parameter ratio $=15.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

6-Bromo-1'-ethyl-4-(1-ethyl-3,3-dimethyl-1H-indolin-2-ylidenemethyl)-3', $\mathbf{3}^{\prime}$ -dimethylspiro[3,4-dihydro-2H-1-benzopyran$2,2^{\prime}\left(3^{\prime} H\right)-1^{\prime} H$-indoline], a dicondensed spiropyran

The title molecule, $\mathrm{C}_{33} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}$, as a dicondensed spiropyran (DC), contains a benzopyran and two indoline ring systems. Each of the three systems is nearly planar. While both indolines are almost perpendicular to the benzopyran, they make a dihedral angle of 33.6 (4) ${ }^{\circ}$ with each other. The two chiral C atoms have the same chirality $(R R$ or $S S)$.

Comment

As photochromic and thermochromic organic compounds, benzospiropyrans have received considerable attention (Berkovic et al., 2000), due to their potential application in data recording, optical switching, displays and non-linear optics (Feringa et al., 1993). Dicondensed spiropyrans (DC) were reported as side products in the synthesis of spiropyrans, and found use as additives in silver halide emulsions and components of thermal papers (Pommier et al., 1975), but their structures were assigned differently (Koelsch \& Workman, 1952; Hinnen et al., 1968) and no crystal structure was found in the Cambridge Structural Database (Version 5.26; Allen, 2002). The unequivocal structure of (I) has therefore been established by X-ray single-crystal analysis and is reported here.

(I)

The title molecule contains six rings, and each pair of fused rings (I and II, III and IV, and V and VI) is nearly coplanar. The dihedral angles between rings I and II, III and IV, and V and VI are 7.2 (2), 2.1 (3) and $7.1(2)^{\circ}$, respectively. The dihedral angle between the first indoline (I and II) and the benzopyran (III and IV) is 98.7 (3) ${ }^{\circ}$, that of the second indoline (V and VI) and benzopyran is $90.7(4)^{\circ}$, and that of the two indolines is $33.6(4)^{\circ}$. Atoms C7 and C9 have the same

Received 27 September 2005
Accepted 4 November 2005
Online 16 November 2005

Figure 1
View of the molecular structure of the title compound, showing 30% probability displacement ellipsoids.

Packing diagram for (I), viewed down the c axis.
configuration ($R R$ or $S S$ in inversion-related molecules). The $\mathrm{C} 7-\mathrm{C} 10-\mathrm{C} 11-\mathrm{N} 1$ torsion angle is $-175.9(3)^{\circ}$, showing that the double bond $\mathrm{C} 10=\mathrm{C} 11$ adopts an E configuration. The torsion angles $\mathrm{H} 8 A-\mathrm{C} 8-\mathrm{C} 7-\mathrm{H} 7, \mathrm{H} 8 B-\mathrm{C} 8-\mathrm{C} 7-\mathrm{H} 7$ and $\mathrm{H} 7-\mathrm{C} 7-\mathrm{C} 10-\mathrm{H} 10$ are 53,169 and -176°, respectively. All of the above is consistent with the results of a recent paper (Keum et al., 2005), in which the authors discussed the mechanism of DC formation using geometric data.

In the crystal structure, molecules interact through C H $\cdots \pi$ interactions (Table 2; Madhavi et al., 1997; Umezawa et al., 1998) and pack in a parallel manner along [010] (Fig. 2 and Table 2).

Experimental

A solution of 5 -bromosalicyaldehyde (0.5 g) and 1-ethyl-3,3-di-methyl-2-methyleneindoline (0.3 g , Fischer base) in 15 ml of ethanol was boiled for 3 h and cooled. The solid was removed and washed with 95% ethanol. Colourless crystals (m.p. 456-458 K) were grown by slow evaporation at ambient temperature (298 K) of a solution in chloroform and ethanol (1:2 v/v) for 3 d . IR (FT-IR spectrometer with KBr pellets, $v, \mathrm{~cm}^{-1}$): $1488,1106,989,923,1384,1606 ;{ }^{1} \mathrm{H}$ NMR (Bruker AV-400 NMR spectrometer, $399.97 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): δ $1.14(t, 7 \mathrm{H}), 1.28(s, 4 \mathrm{H}), 1.33(s, 3 \mathrm{H}), 1.64(s, 4 \mathrm{H}), 2.10(t, 1 \mathrm{H}), 2.41$ $(m, 1 \mathrm{H}), 3.20(m, 2 \mathrm{H}), 3.30(m, 1 \mathrm{H}), 3.55(d, 1 \mathrm{H}), 3.87(d, 1 \mathrm{H}), 5.72(d$, $1 \mathrm{H}), 6.57(t, 2 \mathrm{H}), 6.79(m, 2 \mathrm{H}), 7.06(d, 2 \mathrm{H}), 7.15(s, 3 \mathrm{H}), 7.58(d, 2 \mathrm{H})$.

Crystal data
$\mathrm{C}_{33} \mathrm{H}_{37} \mathrm{BrN}_{2} \mathrm{O}$
$M_{r}=557.56$
Monoclinic, $P 2_{1} / n$
$a=12.4808$ (15) \AA
$b=12.0528$ (15) \AA
$c=20.146$ (3) A
$\beta=107.031$ (4) ${ }^{\circ}$
$V=2897.7$ (7) \AA^{3}
$Z=4$
$D_{x}=1.278 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 9054
reflections
$\theta=3.1-25.3^{\circ}$
$\mu=1.45 \mathrm{~mm}^{-1}$
$T=193$ (2) K
Block, colorless
$0.32 \times 0.30 \times 0.19 \mathrm{~mm}$

Data collection

Rigaku Mercury diffractometer ω scans
Absorption correction: multi-scan (Jacobson, 1998)
$T_{\text {min }}=0.648, T_{\text {max }}=0.763$
28220 measured reflections 5291 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.057$
$w R\left(F^{2}\right)=0.124$
$S=1.15$
5291 reflections
341 parameters
H -atom parameters constrained

4270 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.046$
$\theta_{\text {max }}=25.4^{\circ}$
$h=-14 \rightarrow 15$
$k=-13 \rightarrow 14$
$l=-24 \rightarrow 24$

$$
\begin{aligned}
& w=1 / {\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0445 P)^{2}\right.} \\
&+1.8582 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.003 \\
& \Delta \rho_{\max }=0.24 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.44 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\mathrm{A},{ }^{\circ}\right)$.

O1-C1	$1.366(3)$	N2-C9	$1.446(4)$
O1-C9	$1.474(3)$	N2-C30	$1.455(4)$
N1-C18	$1.388(4)$	C2-C7	$1.520(4)$
N1-C11	$1.401(4)$	C7-C10	$1.492(4)$
N1-C26	$1.449(4)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.529(4)$
N2-C25	$1.394(4)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.337(4)$
C1-O1-C9	$120.2(2)$	$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 7$	$115.0(2)$
C18-N1-C11	$111.0(2)$	$\mathrm{N} 2-\mathrm{C} 9-\mathrm{O} 1$	$105.1(2)$
C18-N1-C26	$123.1(2)$	$\mathrm{N} 2-\mathrm{C} 9-\mathrm{C} 8$	$112.2(2)$
C11-N1-C26	$123.7(2)$	$\mathrm{O} 1-\mathrm{C} 9-\mathrm{C} 8$	$109.3(2)$
C25-N2-C9	$109.0(2)$	$\mathrm{N} 2-\mathrm{C} 9-\mathrm{C} 19$	$103.0(2)$
C25-N2-C30	$121.5(2)$	$\mathrm{O} 1-\mathrm{C} 9-\mathrm{C} 19$	$108.3(2)$
C9-N2-C30	$121.5(2)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 19$	$118.0(2)$
C7-C10-C11-N1	$-175.9(3)$		

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).
$C g 5$ is the centre of ring V.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 31-\mathrm{H} 31 B \cdots 01^{\mathrm{i}}$	0.98	3.19	$3.960(3)$	136
C23-H23 $\cdots C g 5{ }^{\mathrm{ii}}$	0.95	2.82	$3.629(3)$	143

Symmetry codes: (i) $-x+\frac{3}{2}, y+\frac{1}{2},-z+\frac{3}{2}$; (ii) $-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{3}{2}$.

H atoms were positioned geometrically. The $\mathrm{C}-\mathrm{H}$ bond lengths are $0.98 \AA$ for primary $\mathrm{C}, 0.99 \AA$ for secondary $\mathrm{C}, 1.00 \AA$ for tertiary C and $0.95 \AA$ for aromatic $s p^{2} \mathrm{C}$ atoms; the H atoms were treated as riding, with $U_{\text {iso }}(\mathrm{H})=x U_{\text {eq }}$ (carrier atom), with $x=1.5$ for the primary C atoms and 1.2 for the other C atoms.

organic papers

Data collection: CRYSTALCLEAR (Rigaku, 1999); cell refinement: CRYSTALCLEAR; data reduction: CrystalStructure (Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

This research was supported by the Key Subject Foundation of Jiangsu Province (No. S1109001).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Berkovic, G., Krongauz, V. \& Weiss, V. (2000). Chem. Rev. 100, 1741-1753.
Feringa, B. L., Jager, W. F. \& de Lange, B. (1993). Tetrahedron, 49, 8267-8310.

Hinnen, A., Audic, C. \& Gautron, R. (1968). Bull. Soc. Chim. Fr. pp. 20662074.

Jacobson, R. (1998). Private communication to Rigaku Corporation, Tokyo, Japan.
Keum, S.-R., Ku, B.-S., Shin, J.-T., Ko, J. J. \& Buncel, E. (2005). Tetrahedron, 61, 6720-6725.
Koelsch, C. F. \& Workman, W. R. (1952). J. Am. Chem. Soc. 74, 6288-6289.
Madhavi, N. N. L., Desiraju, G. R., Katz, A. K., Carrell, H. L., \& Nangia, A. (1997). Chem. Commun. pp. 1953-1954.

Pommier, H., Samat, A., Metzger, J. \& Guglielmetti, R. (1975). J. Chim. Phys. Phys. Chim. Biol. 72, 589-594.
Rigaku (1999). CRYSTALCLEAR. Rigaku Corporation, Tokyo, Japan.
Rigaku (2000). CrystalStructure. Rigaku Corporation, Tokyo, Japan
Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Umezawa, Y., Tsuboyama, S., Honda, K., Uzawa, J. \& Nishio, M. (1998). Bull. Chem. Soc. Jpn, 71, 1207-1213.

